Geologic controls on phytoplankton elemental composition

Shlomit Sharoni*1 and Itay Halevy*2

*Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel

Edited by Mark Thieme, Chemistry and Biochemistry, University of California San Diego, La Jolla, CA; received July 19, 2021; accepted November 16, 2021

Planktonic organic matter forms the base of the marine food web, and its nutrient content (C:N:Porg) governs material and energy fluxes in the ocean. Over Earth history, C:N:Porg had a crucial role in marine metazoan evolution and global biogeochemical dynamics, but the geologic history of C:N:Porg is unknown, and it is often regarded constant at the “Redfield” ratio of ∼106:16:1. We calculated C:N:Porg through Phanerozoic time by including nutrient- and temperature-dependent C:N:Porg parameterizations in a model of the long-timescale biogeochemical cycles. We infer a decrease from high Paleozoic Corg and Norg to present-day ratios, which stems from a decrease in the global average temperature and an increase in seawater phosphate availability. These changes in the phytoplankton’s growth environment were driven by various Phanerozoic events: specifically, the middle to late Paleozoic expansion of land plants and the Triassic breakup of the supercontinent Pangaea, which increased continental weatherability and the fluxes of weathering-derived phosphate to the oceans. The resulting increase in the nutrient content of planktonic organic matter likely impacted the evolution of marine fauna and global biogeochemistry.

Organic matter stoichiometry | C:N:P | Marine fauna evolution

The elemental composition of marine primary producers (phytoplankton) is a key governing factor in the evolution of marine fauna and biogeochemical cycling on geologic (million-year and longer) timescales (1–3). As phytoplankton form the base of the marine food web, the molar ratio by which they incorporate essential nutrients, namely nitrogen and phosphorus, relative to carbon (C:N:Porg) reflects the quality of the phytoplankton as a food source. Low-quality food, which has high C:N:Porg, may limit the growth and reproduction of herbivores, affecting the dynamics and demographics of marine organisms at higher trophic levels (4–8). In contrast, high-quality organic matter with lower C:N:Porg allows the consumers to expend less energy on carbon respiration, leaving more energy to evolve traits that facilitate motility, grazing, and reproduction (1, 3, 8). Furthermore, together with the total availability of the limiting nutrient, C:N:Porg governs the amount of organic carbon produced in the photic layer by marine primary producers and the amount of dioxygen (O2) consumed in the deep ocean by respiration. The dynamics of primary production at the ocean surface and respiration in the ocean interior govern the degree of ocean anoxia, and ultimately the burial of organic carbon in sedimentary rocks, which is responsible for the maintenance of O2 in Earth’s atmosphere over geologic time (9–11).

Despite its evolutionary and biogeochemical importance, the geologic history of C:N:Porg is poorly constrained, and this ratio is often regarded to have remained constant at its present-day value throughout Phanerozoic Earth history. A part of the reason for this knowledge gap is the absence of a direct proxy for paleo-C:N:Porg. Preferential remineralization of phosphorus and nitrogen during burial in sediments alters the primary composition of fresh organic matter and precludes the use of C:N:Porg in sedimentary rocks as such a proxy (1, 12, 13).

Present-Day Variability in C:N:Porg

In the present ocean, C:N:Porg is often considered to have an average value of 106:16:1 (molar ratio), i.e., the “Redfield ratio” (14, 15). However, substantial spatiotemporal C:N:Porg variations have been shown to exist, some of which represent variations in the phytoplankton community composition (16–18). For example, C:Porg and N:Porg in the cold, nutrient-rich, high-latitude oceans are ∼78:1 and ∼13:1, and this may reflect the regional dominance of diatoms, which display lower-than-Redfield N:Porg and C:Porg (19–21). In contrast, the warm, nutrient-depleted (oligotrophic) midlatitude oceans are characterized by higher-than-Redfield C:Porg and N:Porg of ∼195:1 and ∼28:1, and this may reflect the regional dominance of cyanobacteria, which display higher-than-Redfield elemental ratios under nutrient-replete conditions (17, 22). Marine C:N:Porg may further deviate from the taxon-specific cellular stoichiometry in response to environmental stresses (23, 24). For example, C:Porg of some phytoplankton increases under phosphate scarcity, due to substitution of nonphosphorus membrane lipids for phospholipids (25). Irrespective of their exact cause, these large-scale variations in C:N:Porg seem to depend on the abiotic environment, that is, on the temperature and phosphate concentration of seawater (17, 26–28). Thus, a change in these environmental parameters in response to geologic drivers is expected to have altered the average C:N:Porg of the planktonic biomass over Earth history (2).

Author contributions: S.S. and I.H. designed research; S.S. performed research; S.S. analyzed data; and S.S. and I.H. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: shlomit.sharoni@weizmann.ac.il.

Significance

The elemental composition of marine phytoplankton reflects their quality as a food source and regulates the flow of carbon, oxygen, and nutrients between the ocean, atmosphere, and rock reservoirs. Despite this importance, no systematic estimate exists of the geologic history of phytoplankton elemental composition, which is often regarded to have been constant through time, limiting our understanding of evolutionary patterns and global biogeochemistry. Here, using a biogeochemical model forced by geologic and evolutionary events (e.g., the colonization of the continents by plants), we find that the nutrient content of phytoplankton has increased over the last 550 million y of Earth history. This increase in the organic matter nutrient content has likely been important for the evolution of marine fauna.

PNAS 2022 Vol. 119 No. 1 e2113263119
Phanerozoic Global Average Temperature and Surface–Ocean Phosphate Concentration

Phytoplankton C:N:P$_{org}$ ratios are thought to depend mostly on the temperature and/or phosphate concentration of the phytoplankton’s growth environment (24, 26, 27). Below we review the Phanerozoic trajectories of these variables in response to tectonic and evolutionary forcings, as predicted by a model for the long-term cycles of phosphate, carbon, O$_2$, and calcium, which is fully described and discussed elsewhere (29). Briefly, the model temperature is mostly affected by volcanic outgassing rates and continental weatherability, which control atmospheric CO$_2$ concentrations (SI Appendix, SI Text and Fig. S1).

The model surface–ocean phosphate concentration mostly reflects a balance between a phosphate source from continental weathering and phosphate removal by burial in sedimentary rocks, the latter of which depends on the concentration of O$_2$ in seawater (SI Appendix, SI Text).

Paleozoic global average temperatures and surface–ocean phosphate concentrations were likely higher and lower than present, respectively (Fig. 1). The model seawater phosphate concentrations are in agreement with the few existing observational constraints and lower than those in most published long-term Earth-system models (SI Appendix, SI Text and Fig. S2). Both the high Paleozoic temperature and the low surface–ocean phosphate concentrations are an outcome of relatively low continental weatherability in the absence of land plants (29).

The extensive root systems of vascular land plants increase fluid infiltration, the surface area of rock exposed to weathering, and the concentration of organic acids in soils, all of which increase continental weatherability (30, 31). Low continental weatherability means that a balance between the long-term carbon sources (outgassing of CO$_2$) and sinks (the temperature-dependent rate of continental and seafloor weathering) is achieved at a higher temperature (32, 33). Alongside the effect of continental weatherability on the global average temperature, the importance of seafloor weathering (relative to continental weathering) as a source of alkalinity to the ocean is high when continental weatherability is low. Continental weathering is a source of both alkalinity and phosphate, whereas under the oxidizing conditions characteristic of most of Phanerozoic time, seafloor weathering is a source of alkalinity only and possibly even a small phosphate sink (34). Thus, intervals of low continental weatherability, like the early Paleozoic, may have been characterized by lower rates of weathering–derived phosphate delivery to the ocean and generally lower phosphate concentrations (29). This effect may have been compensated by lower-than-present early Paleozoic deep-ocean O$_2$ concentrations (35, 36). Anoxic basalt weathering has been suggested to be a phosphate source similar to continental weathering (37), and in this case, early Paleozoic seawater phosphate concentrations may have been close to today’s, but the global average temperature would have still been high relative to today (SI Appendix, SI Text and Fig. S3).

Several tectonic and evolutionary events shaped the Phanerozoic trajectories of global average temperature and seawater phosphate concentrations. The expansion of land plants (~400 to 350 Ma) enhanced continental weatherability, leading to a decrease in the global average temperature and an increase in the rate of phosphate supply to the ocean from continental weathering. Assembly of the supercontinent Pangaea in the late Paleozoic and its tenure into the middle Mesozoic likely resulted in higher global average temperatures and lower surface–ocean phosphate concentrations—an outcome of the difficulty of delivering moisture to the continental interior and the resulting low continental weatherability. At the onset of the breakup of Pangaea (~237 Ma) surface–ocean phosphate concentrations rose and global temperature decreased toward their present-day values (Fig. 1).

Here, we explore the effects of these Phanerozoic variations in the marine environment on the evolution of phytoplankton elemental composition. In the model described above, we implemented phosphate- and temperature-dependent C:N:P$_{org}$ parameterizations (Materials and Methods) and derived empirical global-scale relationships (26, 27) and meta-analysis of laboratory culture data (24). Our results suggest a decrease from high Paleozoic C:P$_{org}$ and N:P$_{org}$ to present-day Redfield ratios, which is driven by geologic and biological controls on Earth’s surface temperature and the seawater phosphate concentration.

Results and Discussion

The Evolution of Phytoplankton C:N:P$_{org}$. The overall evolution of Phanerozoic C:N:P$_{org}$ is a consequence of evolving global temperatures and seawater phosphate concentrations. The effect of these environmental parameters on model phytoplankton C:N:P$_{org}$ is tested using three different empirical relationships (Materials and Methods): 1) a field-based phosphate–C:N:P$_{org}$ relationship (26), 2) a field-based temperature–C:N:P$_{org}$ relationship (27), and 3) a laboratory meta-analysis–based temperature– and phosphate–C:N:P$_{org}$ relationships (24). Driven by the Phanerozoic evolution of seawater phosphate concentrations and global average temperatures (Fig. 1), all three parameterizations yield higher-than-Redfield C:P$_{org}$ and N:P$_{org}$ during the early Paleozoic (Fig. 2 A and B). For example, the temperature-dependent field-based parameterization 2 yields early Paleozoic C:P$_{org}$ between ~130 and 230 and N:P$_{org}$ between ~20 and 30 (95% of model results). If lower deep-ocean O$_2$ concentrations resulted in a phosphate source from seafloor weathering (e.g., ref. 37), then Paleozoic phosphate concentrations higher than our default scenario would result in
and decrease in the seawater phosphate concentration (Fig. 1). As Pangaea broke apart, our model C:P_{org} and N:P_{org} decline to present-day Redfield values (Fig. 2A and B). The ratios calculated on the basis of laboratory studies of phytoplankton growing under different degrees of phosphate and temperature limitation (parameterization 3) (24) are consistently highest. Field-based empirical relationships between C:N:P_{org} and sea-surface temperature (parameterization 2) (27) or seawater phosphate concentrations (parameterization 1) (26) yield intermediate and lowest C:N:P_{org} ratios, respectively. The Phanerozoic C:P_{org} and N:P_{org} median values and 95% confidence intervals calculated with all three parameterizations are provided in Zenodo (40).

We compared our calculated C:P_{org} and N:P_{org} with observed C:P_{org} and N:P_{org} of modern representatives of the major phytoplankton groups. The phytoplankton group-specific C:P_{org} and N:P_{org} values are derived from laboratory strains growing under nutrient-replete conditions (18), which show that red algae tend to thrive under nutrient-rich conditions and display lower C:P_{org} and N:P_{org} than their green and cyanobacterial counterparts (19–21). The group-specific C:P_{org} and N:P_{org} Values are plotted against the group’s time of peak appearance in the fossil record (Fig. 2). Although molecular clock analyses suggest that the three principal red-taxon phytoplankton groups (dinoflagellates, coccolithophores, and diatoms) evolved before the Paleozoic (41, 42), the fossil record indicates that these groups rose to ecological prominence only during the Mesozoic (Fig. 2C). Prior to the Mesozoic, evidence suggests that the green superfamily and cyanobacteria dominated marine primary production (43–47).

Model C:P_{org} and N:P_{org} at the time of the major phytoplankton groups’ peak appearance are similar to C:P_{org} and N:P_{org} in modern representatives of those groups, grown under nutrient-replete conditions (Fig. 2). Application of relationships from the modern ocean to the geologic past carries uncertainty. However, the favorable comparison of our results with the microfossil record suggests that nutrient preferences and elemental compositions of modern phytoplankton groups may be conserved traits that reflect their inherent physiology (21, 48), rather than evolutionary adaptations to the modern marine nutrient regime. If correct, this means, for example, that cyanobacteria have not evolved to thrive at the low nutrient levels in the oligotrophic genes (response to the colonization of high-nutrient waters by modern phytoplankton. Instead, cyanobacteria have always been well suited to the low nutrient levels prevalent during their emergence, and they currently occupy the environments remaining to them—oligotrophic waters unsuited for growth of the more nutrient-rich modern taxa. The conclusion that the elemental composition of phytoplankton is constrained by genetics and evolutionary history is supported by the observation that cyanobacterial strains that have been cultivated under nutrient-replete conditions for almost 40 y still retain a high C:P_{org} (21, 22). Given the short generation time of cyanobacteria (approximately two divisions per day), this duration of cultivation is one to two orders of magnitude longer than that required for adaptive evolution (49).

Higher early Paleozoic C:P_{org} and N:P_{org} values are also consistent with the low suggested “energetics” (biomass, metabolic rates, and physical activity, such as motility and predation) of marine fauna of that time (1, 45, 50–54). On a high C:P_{org} diet (i.e., low-quality food), the energy spent on carbon respiration to access nutrients limits the energy available to evolve traits that facilitate motility, grazing, and reproduction (1, 3, 8). Most Paleozoic fauna fed close to the sediment–water interface and appear to have been characterized by low metabolic and diversification rates (52). Predation and bioturbation, which require substantial amounts of energy (for more advanced nervous and muscular systems), appear to have become more common through time, especially during the Meso-Cenozoic (54, 55), perhaps indicating
that food quality increased (i.e., C:org_P and N:org_P decreased) around that time.

Biogeochemical Implications of Higher Paleozoic C:org_P. Phytoplankton elemental composition has been frequently assumed to be constant at the Redfield ratio in studies of the long-term biogeochemical cycles. However, our study suggests higher-than-Redfield C:org_P and N:org_P during the early Paleozoic, driven by lower phosphate concentrations and a higher temperature. Persistently high Paleozoic C:org_P (Fig. 3A), produced by plasticity in the elemental composition of phytoplankton biomass, would have had significant consequences for marine biogeochemical cycling. For example, early Paleozoic carbon-based new production and burial of organic carbon are higher at elevated C:org_P relative to the case with a Redfield C:org_P (Fig. 3B and C), and this leads to higher atmospheric pCO_2 (Fig. 3E).

Although O_2 production rates in the surface ocean are expected to be higher at elevated C:org_P (relative to a Redfield C:org_P), so is export of organic carbon from the surface to the deep ocean. The associated consumption of O_2 in the deep ocean results in lower deep-ocean O_2 concentrations (Fig. 3F), likely leading to more widespread anoxia. This is in accordance with proxy-based suggestions of deep-ocean anoxia persisting into the middle Paleozoic (35, 56, 57). In contrast to a pronounced effect on the term inorganic carbon cycle is not affected by the introduction of flexible C:N:org_P (Fig. 3G and H, all lines overlap). Atmospheric pCO_2 and the global average surface temperature are insensitive to C:N:org_P because the enhanced burial of organic carbon at high C:org_P is compensated by larger oxidative weathering fluxes of sedimentary organic matter. The increase in organic carbon weathering arises from the increase in atmospheric pO_2, which is a consequence of the enhanced organic carbon burial (Fig. 3D).

The compensating effects of organic carbon burial and oxidative weathering on the inorganic carbon cycle and temperature, described above, operate on the timescale of formation, burial, uplift, and weathering of sedimentary rocks (i.e., tens of millions of years or more). On shorter timescales, before the sedimentary organic matter pool has fully adjusted to a change in the surface environment, we find that flexible C:org_P stabilizes the organic and inorganic carbon cycles and the O_2 cycle, similar to the findings of previous studies (26, 58). Upon perturbation of phosphate supply rates, e.g., by continental flooding or the development of anoxic basins, a rigid coupling (i.e., fixed C:org_P) leads to a stronger response of organic carbon burial, CO_2 drawdown, and O_2 production and release to the atmosphere. During a phosphate enrichment event (Fig. 4A), when C:org_P is fixed at the Redfield ratio (Fig. 4B), more carbon is fixed by marine primary producers, and as a result organic carbon burial and pO_2 transiently reach higher values than in the case of flexible C:org_P (Fig. 4C–E). The higher rates of organic carbon burial shuttle carbon from the ocean–atmosphere into marine sediments, and pCO_2 drops substantially (Fig. 4F). The pCO_2 drop is significantly larger when C:org_P is fixed at the Redfield ratio, resulting in global cooling.

Conclusions We constrained the elemental composition of marine biomass through Phanerozoic time by including phosphate- and temperature-dependent parameterizations of C:org_P in a long-term biogeochemical model. We infer a decrease from high Paleozoic C:org_P and N:org_P to present-day Redfield ratios. The decrease in C:org_P and N:org_P is a result of a decrease in surface temperature and an increase in phosphate availability in the ocean, driven mainly by the emergence and expansion of land plants in the middle to late Paleozoic and by the Triassic breakup of the supercontinent Pangaea. Our results are consistent with the evolutionary trajectory of phytoplankton and with an increase in the energetics of marine fauna suggested by the fossil record.

Fig. 3. Effects of the proposed Phanerozoic evolution of C:N:org_P on the carbon and O_2 cycles. (A–H) Comparison between (A) C:org_P (molar ratio), (B) carbon-based primary productivity (×10^14 Mol C × y^-1), (C) marine organic carbon burial (10^14 Mol C × y^-1), (D) weathering of organic matter in sedimentary rocks (10^14 Mol C × y^-1), (E) atmospheric pCO_2 (atm), (F) the deep-ocean O_2 concentration (µM), (G) atmospheric pCO_2 (×10^6 ppm), and (H) temperature (ºK), for C:N:org_P that is fixed at the Redfield ratio (dashed black line) or variable according to the three parameterizations presented in Fig. 2.
Our time-dependent C:N:P$_{org}$ at the times of peak appearance of the major phytoplankton groups is consistent with that of modern representatives of those groups. This suggests that the elemental composition of these phytoplankton groups is a conserved trait, which is constrained by genetics and evolutionary history, and not an acquired trait. These ideas may be taken as (speculative) step farther. Although uncertainty exists in the reasons and exact timing of evolution and emergence to prominence of the different phytoplankton groups, we raise the possibility that the more nutrient-rich red-lineage phytoplankton were driven to dominance by the shifts in nutrient availability and climate that we describe above. This suggests a link between evolution and tectonics.

We further explored the biogeochemical consequences of flexible elemental ratios on the carbon and O$_2$ cycles. Our results suggest that the higher-than-Redfield C:P$_{org}$ likely prevalent during the early Phanerozoic led to higher marine primary productivity and organic carbon burial, relative to the case of a time-invariant C:P$_{org}$. This simultaneously leads to higher atmospheric O$_2$ levels and more extensive anoxia in the ocean interior, relative to the case of a constant, Redfield C:P$_{org}$. Finally, on short timescales, we find that flexible C:P$_{org}$ weakens the coupling between the phosphorous, carbon, and O$_2$ cycles and dampens perturbations in the carbon and O$_2$ cycles driven by changes in the rate of phosphate delivery to the ocean (Fig. 4).

In summary, it seems that flexibility in the elemental composition of phytoplankton biomass has led to a Phanerozoic decrease in C:P$_{org}$ and N:P$_{org}$ in response to tectonic and evolutionary drivers. This long-term decrease in C:P$_{org}$ and N:P$_{org}$ affected biogeochemical cycling and the stability of Earth’s atmosphere composition and climate over Phanerozoic time.

Materials and Methods

Experiments and Numerical Solution

To explore the possibility that the elemental composition of planktonic organic matter varied through time, we implemented nutrient- and temperature-dependent C:N:P$_{org}$ parameterizations in a model for the long-term cycles of phosphate, carbon, O$_2$, and calcium (the model development, validation, and the numerical procedure are fully described in ref. 29). We tested the evolution of C:N:P$_{org}$ in four experiments. In one, C:N:P$_{org}$ was fixed at the Redfield ratio of 106:16:1. In three others, C:N:P$_{org}$ depended on environmental parameters, as described below. In each experiment we performed \sim105 simulations, where we randomly drew 36 to 37 parameters and 11 time-dependent forcings from distributions that represent the uncertainty in their values (34 parameters are associated with the model described in ref. 29, and 2 to 3 additional parameters are associated with each C:N:P$_{org}$ parameterization; Table 1).

Flexible elemental ratios in marine organic matter over Phanerozoic time are calculated in our model using three different relationships between C:N:P$_{org}$ and the abiotic environment. The C:N:P$_{org}$ parameterization 1 is based on an empirical global relationship between surface phosphate concentrations in the ocean (26): $(P \cdot C/N/P_{org} = (p_1 \times [P] + p_2)$, where p_1 and p_2 are parameters that characterize the linear geometric $(P \cdot C/N)$ dependence on surface phosphate concentrations. The intercept, p_2, which corresponds to the lowest P_{org}, is between 0.0048 and 0.006 (based on binned or unbroken regressions, respectively; figure S2 in ref. 26), and we adopted this range (Table 1). To normalize to present-day conditions, where at the global average surface phosphate concentration [P]$_{avg}$ = 0.5 μM

Table 1. C:N:P$_{org}$ parameterizations employed in this study

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Range</th>
<th>Distribution</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>$p_1 = (p_2 - 0.0094) / 10^5$</td>
<td>(26)</td>
<td></td>
</tr>
<tr>
<td>p_2</td>
<td>0.0048 to 0.006</td>
<td>Uniform (26)</td>
<td></td>
</tr>
<tr>
<td>C:N$_{org}$</td>
<td>1.961 (0.256)</td>
<td>Lognormal (18)</td>
<td></td>
</tr>
<tr>
<td>p_3</td>
<td>0.037 (0.010)</td>
<td>Normal (27)</td>
<td></td>
</tr>
<tr>
<td>p_4</td>
<td>0.032 (0.008)</td>
<td>Normal (27)</td>
<td></td>
</tr>
<tr>
<td>p_5</td>
<td>0.29 (0.8)</td>
<td>Normal (24)</td>
<td></td>
</tr>
<tr>
<td>p_6</td>
<td>−7.8 (0.8)</td>
<td>Normal (24)</td>
<td></td>
</tr>
<tr>
<td>C:P$_{org}$</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C:N$_{org}$</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For normal and lognormal distributions, numbers outside and inside the parentheses represent the mean and SD, respectively.

P$_{org}$ is at the Redfield ratio (C:P$_{org}$ = 0.0094), we set $p_1 = (p_2 - 0.0094) / 10^5$. To calculate N:P$_{org}$ we substitute $(N/P)_{org} = (C/P)_{org} / (C:N)_{org}$, as C:N$_{org}$ is relatively uniform across oceanic regions (26) and among different phytoplankton taxa (23), we draw it from a distribution that represents the variability in this value across different phytoplankton taxa growing under nutrient-replete conditions (Table 1).

Parameterization 2 is based on observed correlations between surface C:P$_{org}$ in the present ocean and sea-surface temperature (27). The geographic temperature dependence of algal elemental composition is given by the equations $(C/P)_{org} = (C/P)_{org}^0 \times e^{a_3(T-T_0)}$ and $(N/P)_{org} = (N/P)_{org}^0 \times e^{a_4(T-T_0)}$, where $(C/P)_{org}^0$ and $(N/P)_{org}^0$ are the Redfield ratios, p_3 and p_4 are parameters that characterize the geographic temperature dependence (Table 1), and T is the global average surface temperature in Kelvin (T_0 is the present-day temperature).

Parameterization 3 is based on a meta-analysis of laboratory experimental data, where the following relationship was reported: $(P \cdot C/N/P_{org} = (P \cdot C/N)_{avg} \times \left[\frac{P}{P_{org}} \right]^{0.5} \times \left[\frac{C}{C_{org}} \right]^{0.5} \times \left[\frac{N}{N_{org}} \right]^{0.5})$. Here, p_5 and p_6 are empirical parameters that represent the sensitivity of the P:C$_{org}$ of different phytoplankton groups to the phosphate concentration and temperature, respectively. We used cyanobacterial $p_5 = 0.3$ and $p_6 = −7.8$ parameters (Table 1), but note that using eukaryote parameters ($p_5 = 0.4$ and $p_6 = 0$) would give similar results due to a tradeoff between phosphate and temperature acclimation (24).

Fossil Assemblage

The fossil data in Fig. 2C represent the number of occurrences of the different phytoplankton groups in the geologic record, which were compiled from the Paleobiology database (https://paleobiodb.org) using the following parameters: time intervals = Phanerozoic, paleoenvironment = marine, order = acritarchs, dinophyceae, prymnesiophyceae, cyanothecae, acritarchs, dinophyceae, prymnesiophyceae, cyanothecae, cyanobacteria, and diatoms. Cyanobacteria are considered to include the early green algae, which use chlorophyll-b. Dinoflagellates, cocclobiophytes, and diatoms, i.e., "modern" red phytoplankton groups, use chlorophyll-c. Biomarkers suggest that cyanobacteria played a significant role in Paleozoic marine primary production alongside green algae (46), and we, therefore, show the composition of cyanobacteria in Fig. 2A and B in the early Paleozoic.

Data Availability

The code used in this study and the model C:Porg and N:Porg trajectories (medians and 95% confidence intervals) over Phanerozoic time are provided in Zenodo (https://zenodo.org/record/5768279#YbttQWjMKHs; ref. 40). All study data are included in this article and/or SI Appendix.

ACKNOWLEDGMENTS

We thank the Interuniversity Institute for Marine Sciences in Eilat, Israel for hosting S.S. S.S. acknowledges support from the Rieger Foundation of the Jewish National Fund and a Pearlman Grant for Student-Initiated Research from the Weizmann Institute of Science.

10. W. S. Broecker, G. M. Henderson, The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO₂ changes. Paleo-
11. R. A. Berner, A model for calcium, magnesium and sulfate in seawater over
12. K. L. Faull, A. Paytan, M. L. Delaney, Phosphorus distribution in sinking oceanic
(2011).
relation to the composition of plankton” in James Johnstone Memorial Volume, R.
15. A. C. Redfield, The biological control of chemical factors in the environment. Am.
(2005).
17. A. C. Martiny et al., Strong latitudinal patterns in the elemental ratios of marine
18. S. Sharoni, I. Halevy, Nutrient ratios in marine particulate organic matter are
predicted by the population structure of well-adapted phytoplankton. Sci. Adv. 6,
eaaw9371 (2020).
19. A. Quigg et al., The evolutionary inheritance of elemental stoichiometry in marine
21. A. Quigg, A. J. Irwin, Z. V. Finkel, Evolutionary inheritance of elemental stoichi-
22. S. Bertilsson, O. Berglund, D. M. Karl, S. W. Chisholm, Elemental composition of
marine prochlorococcus and synechococcus: Implications for the ecological sto-
23. R. J. Geider, J. La Roche, Redfield revisited: Variability of C:N:P in marine microalgae
and its effect on atmospheric carbon dioxide over the past 100 million years. J.
24. T. Tanioka, K. Matsumoto, A meta-analysis on environmental drivers of marine
(2012).
26. S. Sharoni, I. Halevy, Weathering controls on the phosphorocene phosphate
27. P. Kenrick, C. H. Wellman, H. Schneider, G. D. Edgecombe, A timeline for terrestrial
alization: Consequences for the carbon cycle in the Palaeozoic. Philos. Trans. R. Soc.
28. L. L. Taylor et al., Biological weathering and the long-term carbon cycle: Integrating
marginalization and function into the current paradigm. Geobiology 7, 171–
29. J. C. Walker, P. Hays, J. F. Kasting, A negative feedback mechanism for the long-term
30. R. A. Berner, A. C. Lasaga, R. M. Garrels, The carbonate-silicate geochemical cycle
and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J.
31. L. L. Taylor et al., Biological weathering and the long-term carbon cycle: Integrating
marginalization and function into the current paradigm. Geobiology 7, 171–
32. J. C. Walker, P. Hays, J. F. Kasting, A negative feedback mechanism for the long-term
33. C. G. Wheat, R. A. Feely, M. J. Mottl, Phosphate removal by oceanic hydrothermal
34. E. A. Sperling et al., Statistical analysis of iron geochemical data suggests limited
35. D. A. Stolper, C. B. Keller, A record of deep-ocean dissolved O₂ from the oxidation
36. D. Syveren et al., Nutrient supply to planetary biospheres from anoxic weathering
(2017).
38. I. Kuznetsova, T. Neumann, H. Burchard, Model study on the ecosystem impact of
(2008).
40. M. E. Katz, Z. V. Finkel, D. Grzybky, A. H. Knoll, P. G. Falkowski, Evolutionary trajec-
tories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu. Rev.
41. H. S. Yoon, J. D. Hackett, C. Ciniglia, G. Pinto, D. Bhattacharya, A molecular timeline
42. C. De Vargas, M. P. Aubrey, I. Probert, J. Young, “Origin and evolution of coc-
calciophyces: From coastal hunters to oceanic farmers” in Evolution of Primary
43. H. Tappan, Phytoplankton: Below the salt at the global table. J. Paleontol. 60, 545–554
(1986).
44. P. G. Falkowski et al., The evolution of modern eukaryotic phytoplankton. Science
45. M. E. Katz, Z. V. Finkel, D. Grzybky, A. H. Knoll, P. G. Falkowski, Evolutionary trajec-
tories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu. Rev.
46. A. H. Knoll, R. E. Summons, J. R. Waldbauer, J. E. Zumberge, “The geological
succession of primary producers in the oceans” in Evolution of Primary Producers
47. A. H. Knoll, Paleobiological perspectives on early eukaryotic evolution. Cold Spring
50. G. J. Vermeij, The Mesozoic marine revolution: Evidence from snails, predators and
51. R. K. Bambach, Seafood through time: Changes in biomass, energetics, and produc-
52. R. K. Bambach, Energetics in the global marine fauna: A connection between
terrestrial diversification and change in the marine biosphere. Geobiol. 32, 131–144
(1999).
53. D. A. Stolper, C. B. Keller, A record of deep-ocean dissolved O₂ from the oxidation
17915 (2010).
54. K. Matsumoto, R. Rickaby, T. Tanioka, Carbon export buffering and CO₂ drawdown
by flexible phytoplankton C:N:P under glacial conditions. Paleoceanogr. Paleoclima-